Lecture 3. Separable Equations

Recall in Lecture 2, we solved questions like
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The idea is integrating both sides. Can we apply the same idea for the following question?
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Figure. The solution curves for — = ysinz.
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General Separable Equations

. . . dy . . .
In general, the first-order differential equation —— = f(x,y) is separable if f(x, y) can be written as the

dx

product of a function of @ and a function of ¥:

Z—z = f(z,y) = g(z)k(y)

e Ifk(y) # 0, then we can write

e To solve the differential equation we simply integrate both sides:

/%z/g(w)dm—i—()’

e Note we also need to check if k(y) = 0 gives us a solution.

Implicit, General, and Singular Solutions

¢ General solution: A solution of a differential equation that contains an “arbitrary constant” C.

For example, in Example 1,y = Ce™ “*% C # 0 is a constant is a general solution.

e Singular solution: Exceptional solutions cannot be obtained from the general solution.

In Example 1, y = O'is a singular solution.

e Implicit solution The equation K (z,y) = 0 is commonly called an implicit solution of a differential
equation if it is satisfied (on some interval) by some solution ¥ = y(z) of the differential equation.

For example, in Example 1, In |y| = e~ % 4 C'is an implicit solution



Exercise 2. Find solutions of the differential equation 2\/53—5 =4/1—-92
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Example 3. Find the particular solution if the initial value problem seramloUL

2y%:\/aﬁ%16, y(5) = 2.
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Exercise 4 Solve the separable differential equation with the initial condition.
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Exercise 5 Using separation of variables, solve the differential equation,
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