Lecture 3. Separable Equations

Recall in Lecture 2, we solved questions like

$$\frac{dy}{dx} = f(x)$$

The idea is integrating both sides. Can we apply the same idea for the following question?

 $\frac{dy}{dx} = y \sin x. \bigcirc = k(y) \cdot f(x)$ **Example 1.** Find solutions of the differential equation ANS: If y=0, we can divide both sides by y and multiply both sides by dx. y = sinxdx Integrate both sides, we have $\int \frac{dy}{y} = \int \frac{dy}{dx} = \int \frac{dy}{dx} = \ln |y| = -\cos x + C,$ $e^{\ln|y|} = e^{-\cos x + c_1} \implies |y| = e^{c_1} \cdot e^{-\cos x}$ $\Rightarrow M = \pm e^{c_1} \cdot e^{-\cos x} = C e^{-\cos x} (C \neq 0)$ $\Rightarrow \qquad y = ce^{-cost}, c \neq 0$ Note y=0 also satisfies () So y=0 is also a solution. $\exp(-\cos(x))$ $2\exp(-\cos(x))$ -10 $3\exp(-\cos(x))$ -5 $-3 \exp(-\cos(x))$ -10 Figure. The solution curves for $\frac{dy}{dx} = y \sin x$.

General Separable Equations

In general, the first-order differential equation $\frac{dy}{dx} = f(x, y)$ is separable if f(x, y) can be written as the product of a function of x and a function of y:

$$\frac{dy}{dx} = f(x,y) = g(x)k(y)$$

• If k(y)
eq 0, then we can write

$$\frac{dy}{k(y)} = g(x)dx$$

• To solve the differential equation we simply integrate both sides:

$$\int rac{dy}{k(y)} = \int g(x) dx + C$$

• Note we also need to check if k(y) = 0 gives us a solution.

Implicit, General, and Singular Solutions

- **General solution:** A solution of a differential equation that contains an "arbitrary constant" *C*. For example, in **Example 1**, $y = Ce^{-\cos x}$, $C \neq 0$ is a constant is a general solution.
- **Singular solution:** Exceptional solutions cannot be obtained from the general solution. In **Example 1**, y = 0 is a singular solution.
- Implicit solution The equation K(x, y) = 0 is commonly called an implicit solution of a differential equation if it is satisfied (on some interval) by some solution y = y(x) of the differential equation.

For example, in **Example 1**, $\ln |y| = e^{-\cos x} + C$ is an implicit solution

Exercise 2. Find solutions of the differential equation $2\sqrt{x}\frac{dy}{dx} = \sqrt{1-y^2}$.

ANS: Note
$$1-y^2 \ge 0 \implies -1 = y \le 1$$

If $\sqrt{1-y^2} \ne 0$, $x \ne 0$, we have
 $\int \frac{dy}{\sqrt{1-y^2}} = \int \pm \frac{1}{\sqrt{x}} dx$
 $\Rightarrow \sin^{-1}y = \sqrt{x} \pm C$
 $\Rightarrow y(x) = \sin(\sqrt{x} \pm C)$
If $\sqrt{1-y^2} = 0$, $y(x) \equiv \pm 1$, which
also satisfy the given equation
So the equation has general solution
 $y(x) = \sinh(\sqrt{x} \pm C)$
and singular solutions
 $y(x) \equiv \pm 1$

Example 3. Find the particular solution if the initial value problem

$$2yrac{dy}{dx}=rac{x}{\sqrt{x^2-16}},\qquad y(5)=2.$$

Ans: We have

$$\int \frac{x}{\sqrt{x^2-16}} dx$$

$$\int \frac{x}{\sqrt{x^2-16}} dx$$

$$\int \frac{x}{\sqrt{x^2-16}} dx$$

$$\int \frac{x}{\sqrt{x^2-16}} dx$$

$$\int \frac{1}{\sqrt{x^2-16}} dx$$

$$\int \frac{1}{\sqrt{x^2-16}} dx = \int \frac{1}{\sqrt{16}} dx$$

$$\int \frac{1}{\sqrt{16}} dx = \int \frac{1}{\sqrt{16$$

Exercise 4 Solve the separable differential equation with the initial condition.

 $11x - 8y\sqrt{x^2 + 1}\frac{dy}{dx} = 0, \quad y(0) = 2$ ANS: First separate the variables: $|| x = 8 y \sqrt{x^2 + 1} \frac{dy}{dx}$ If y = 0, we have $\frac{11x}{\sqrt{x^2+1}} dx = 8y dy$ Integrate both sides: $\int \frac{11x}{\sqrt{x^2 (1-x)^2}} dx = \int 8 y dy$ \mathcal{O} To compute the left hand side, we use u-subs. Let u=x+1, then du=2xdx. Thus xdx= ±du. Then $\int \frac{11 \times 1}{\sqrt{x^{2}+1}} \, dx = 11 \int \frac{1}{\sqrt{x^{2}}} \, du = \frac{11}{2} \int u^{-\frac{1}{2}} \, du = \frac{11}{2} \cdot \frac{1}{1-\frac{1}{2}} \, u^{\frac{1}{2}} + C_{\mu}$ $= 11\sqrt{x+1} + C$ Thus O becomes

$$11 \sqrt{x^{2}+1} + C_{1} = 4 y^{2}$$
 is also a constant. call it C.

$$\Rightarrow y^{2} = \frac{14}{4} \sqrt{x^{2}+1} + \frac{C_{1}}{4}$$

$$\Rightarrow y^{2} = \frac{14}{4} \sqrt{x^{2}+1} + C.$$

$$\Rightarrow y^{2} = \pm \sqrt{\frac{14}{4}} \sqrt{x^{2}+1} + C.$$

Thus y(x) is either $\neq 0$ or ≤ 0 . As $y(0)=2 \geq 0$, we have to take the "+" sign. We have $y(0)= = = \sqrt{\#\sqrt{0+1}} + C$ $\Rightarrow 4 = \# + C$ $\Rightarrow C = 4 - \# = 1.25$ Thus $y(x)= \sqrt{\#\sqrt{x+1}} + 1.25$ **Exercise 5** Using separation of variables, solve the differential equation,

$$ig(6+x^6)rac{dy}{dx}=rac{x^5}{y}$$

ANS: We have

$$y dy = \frac{x^{5}}{6 + x^{6}} dx \qquad since \qquad x^{5} dx = \frac{1}{6} dx^{6}$$

$$\Rightarrow x^{5} dx = \frac{1}{6} dx^{6} dx = \int \frac{1}{6} \frac{1$$